FUNDAMENTALS OF DATABASE SYSTEMS

7TH Edition

ELMASRI • NAVATHE

FUNDAMENTALS OF

Database Systems

SEVENTH EDITION

This page intentionally left blank

FUNDAMENTALS OF

Database Systems

SEVENTH EDITION

Ramez Elmasri Department of Computer Science and Engineering The University of Texas at Arlington

Shamkant B. Navathe *College of Computing Georgia Institute of Technology*

PEARSON

Boston Columbus Indianapolis New York San Francisco Hoboken Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Vice President and Editorial Director, ECS:	Operations Specialist: Maura Zaldivar-Garcia
Marcia J. Horton	Cover Designer: Black Horse Designs
Acquisitions Editor: Matt Goldstein	Manager, Rights and Permissions: Rachel Youdelman
Editorial Assistant: Kelsey Loanes	Associate Project Manager, Rights and Permissions:
Marketing Managers: Bram Van Kempen, Demetrius Hall	Timothy Nicholls
Marketing Assistant: Jon Bryant	Full-Service Project Management: Rashmi Tickyani,
Senior Managing Editor: Scott Disanno	iEnergizer Aptara [®] , Ltd.
Production Project Manager: Rose Kernan	Composition: <i>iEnergizer Aptara</i> *, Ltd.
Program Manager: Carole Snyder	Printer/Binder: Edwards Brothers Malloy
Global HE Director of Vendor Sourcing	Cover Printer: Phoenix Color/Hagerstown
and Procurement: Diane Hynes	Cover Image: Micha Pawlitzki/Terra/Corbis
Director of Operations: Nick Sklitsis	Typeface: 10.5/12 Minion Pro
Director of Operations. With Skillsis	Typerace. 10.5/12 Withion 110

Copyright © **2016**, **2011**, **2007** by Ramez Elmasri and Shamkant B. Navathe. All rights reserved. Manufactured in the United States of America. This publication is protected by Copyright and permissions should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use materials from this work, please submit a written request to Pearson Higher Education, Permissions Department, 221 River Street, Hoboken, NJ 07030.

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages with, or arising out of, the furnishing, performance, or use of these programs.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the documents and related graphics published as part of the services for any purpose. All such documents and related graphics are provided "as is" without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties and conditions with regard to this information, including all warranties and conditions of merchantability. Whether express, implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall microsoft and/or its respective suppliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract. Negligence or other tortious action, arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes are periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or changes in the product(s) and/or the program(s) described herein at any time. Partial screen shots may be viewed in full within the software version specified.

Library of Congress Cataloging-in-Publication Data on File

10 9 8 7 6 5 4 3 2 1

ISBN-10: 0-13-397077-9 ISBN-13: 978-0-13-397077-7 To Amalia and to Ramy, Riyad, Katrina, and Thomas R. E.

To my wife Aruna for her love, support, and understanding and to Rohan, Maya, and Ayush for bringing so much joy into our lives S.B.N. This page intentionally left blank

Preface

his book introduces the fundamental concepts necessary for designing, using, and implementing database systems and database applications. Our presentation stresses the fundamentals of database modeling and design, the languages and models provided by the database management systems, and database system implementation techniques. The book is meant to be used as a textbook for a one- or two-semester course in database systems at the junior, senior, or graduate level, and as a reference book. Our goal is to provide an in-depth and up-to-date presentation of the most important aspects of database systems and applications, and related technologies. We assume that readers are familiar with elementary programming and data-structuring concepts and that they have had some exposure to the basics of computer organization.

New to This Edition

The following key features have been added in the seventh edition:

- A reorganization of the chapter ordering (this was based on a survey of the instructors who use the textbook); however, the book is still organized so that the individual instructor can choose to follow the new chapter ordering or *choose a different ordering of chapters* (for example, follow the chapter order from the sixth edition) when presenting the materials.
- There are two new chapters on recent advances in database systems and big data processing; one new chapter (Chapter 24) covers an introduction to the newer class of database systems known as NOSQL databases, and the other new chapter (Chapter 25) covers technologies for processing big data, including MapReduce and Hadoop.
- The chapter on query processing and optimization has been expanded and reorganized into two chapters; Chapter 18 focuses on strategies and algorithms for query processing whereas Chapter 19 focuses on query optimization techniques.
- A second UNIVERSITY database example has been added to the early chapters (Chapters 3 through 8) in addition to our COMPANY database example from the previous editions.
- Many of the individual chapters have been updated to varying degrees to include newer techniques and methods; rather than discuss these enhancements here,

we will describe them later in the preface when we discuss the organization of the seventh edition.

The following are key features of the book:

- A self-contained, flexible organization that can be tailored to individual needs; in particular, *the chapters can be used in different orders* depending on the instructor's preference.
- A companion website (http://www.pearsonhighered.com/cs-resources) includes data to be loaded into various types of relational databases for more realistic student laboratory exercises.
- A dependency chart (shown later in this preface) to show which chapters depend on other earlier chapters; this can guide the instructor who wants to tailor the *order of presentation of the chapters*.
- A collection of supplements, including a robust set of materials for instructors and students such as PowerPoint slides, figures from the text, and an instructor's guide with solutions.

Organization and Contents of the Seventh Edition

There are some organizational changes in the seventh edition as well as improvement to the individual chapters. The book is now divided into 12 parts as follows:

- Part 1 (Chapters 1 and 2) describes the basic introductory concepts necessary for a good understanding of database models, systems, and languages. Chapters 1 and 2 introduce databases, typical users, and DBMS concepts, terminology, and architecture, as well as a discussion of the progression of database technologies over time and a brief history of data models. These chapters have been updated to introduce some of the newer technologies such as NOSQL systems.
- Part 2 (Chapters 3 and 4) includes the presentation on entity-relationship modeling and database design; however, it is *important to note* that instructors can cover the relational model chapters (Chapters 5 through 8) *before Chapters 3 and 4* if that is their preferred order of presenting the course materials. In Chapter 3, the concepts of the Entity-Relationship (ER) model and ER diagrams are presented and used to illustrate conceptual database design. Chapter 4 shows how the basic ER model can be extended to incorporate additional modeling concepts such as subclasses, specialization, generalization, union types (categories) and inheritance, leading to the enhanced-ER (EER) data model and EER diagrams. The notation for the class diagrams of UML are also introduced in Chapters 7 and 8 as an alternative model and diagrammatic notation for ER/EER diagrams.
- Part 3 (Chapters 5 through 8) includes a detailed presentation on relational databases and SQL with some additional new material in the SQL chapters to cover a few SQL constructs that were not in the previous edition. Chapter 5

describes the basic relational model, its integrity constraints, and update operations. Chapter 6 describes some of the basic parts of the SQL standard for relational databases, including data definition, data modification operations, and simple SQL queries. Chapter 7 presents more complex SQL queries, as well as the SQL concepts of triggers, assertions, views, and schema modification. Chapter 8 describes the formal operations of the relational algebra and introduces the relational calculus. The material on SQL (Chapters 6 and 7) is presented before our presentation on relational algebra and calculus in Chapter 8 to allow instructors to start SQL projects early in a course if they wish (it is possible to cover Chapter 8 before Chapters 6 and 7 if the instructor desires this order). The final chapter in Part 2, Chapter 9, covers ER- and EER-to-relational mapping, which are algorithms that can be used for designing a relational database schema from a conceptual ER/EER schema design.

- Part 4 (Chapters 10 and 11) are the chapters on database programming techniques; these chapters can be assigned as reading materials and augmented with materials on the particular language used in the course for programming projects (much of this documentation is readily available on the Web). Chapter 10 covers traditional SQL programming topics, such as embedded SQL, dynamic SQL, ODBC, SQLJ, JDBC, and SQL/CLI. Chapter 11 introduces Web database programming, using the PHP scripting language in our examples, and includes new material that discusses Java technologies for Web database programming.
- Part 5 (Chapters 12 and 13) covers the updated material on object-relational and object-oriented databases (Chapter 12) and XML (Chapter 13); both of these chapters now include a presentation of how the SQL standard incorporates object concepts and XML concepts into more recent versions of the SQL standard. Chapter 12 first introduces the concepts for object databases, and then shows how they have been incorporated into the SQL standard in order to add object capabilities to relational database systems. It then covers the ODMG object model standard, and its object definition and query languages. Chapter 13 covers the XML (eXtensible Markup Language) model and languages, and discusses how XML is related to database systems. It presents XML concepts and languages, and compares the XML model to traditional database models. We also show how data can be converted between the XML and relational representations, and the SQL commands for extracting XML documents from relational tables.
- Part 6 (Chapters 14 and 15) are the normalization and relational design theory chapters (we moved all the formal aspects of normalization algorithms to Chapter 15). Chapter 14 defines functional dependencies, and the normal forms that are based on functional dependencies. Chapter 14 also develops a step-by-step intuitive normalization approach, and includes the definitions of multivalued dependencies and join dependencies. Chapter 15 covers normalization theory, and the formalisms, theories,

and algorithms developed for relational database design by normalization, including the relational decomposition algorithms and the relational synthesis algorithms.

- Part 7 (Chapters 16 and 17) contains the chapters on file organizations on disk (Chapter 16) and indexing of database files (Chapter 17). Chapter 16 describes primary methods of organizing files of records on disk, including ordered (sorted), unordered (heap), and hashed files; both static and dynamic hashing techniques for disk files are covered. Chapter 16 has been updated to include materials on buffer management strategies for DBMSs as well as an overview of new storage devices and standards for files and modern storage architectures. Chapter 17 describes indexing techniques for files, including B-tree and B⁺-tree data structures and grid files, and has been updated with new examples and an enhanced discussion on indexing, including how to choose appropriate indexes and index creation during physical design.
- Part 8 (Chapters 18 and 19) includes the chapters on query processing algorithms (Chapter 18) and optimization techniques (Chapter 19); these two chapters have been updated and reorganized from the single chapter that covered both topics in the previous editions and include some of the newer techniques that are used in commercial DBMSs. Chapter 18 presents algorithms for searching for records on disk files, and for joining records from two files (tables), as well as for other relational operations. Chapter 18 contains new material, including a discussion of the semi-join and anti-join operations with examples of how they are used in query processing, as well as a discussion of techniques for selectivity estimation. Chapter 19 covers techniques for query optimization using cost estimation and heuristic rules; it includes new material on nested subquery optimization, use of histograms, physical optimization, and join ordering methods and optimization of typical queries in data warehouses.
- Part 9 (Chapters 20, 21, and 22) covers transaction processing concepts; concurrency control; and database recovery from failures. These chapters have been updated to include some of the newer techniques that are used in some commercial and open source DBMSs. Chapter 20 introduces the techniques needed for transaction processing systems, and defines the concepts of recoverability and serializability of schedules; it has a new section on buffer replacement policies for DBMSs and a new discussion on the concept of snapshot isolation. Chapter 21 gives an overview of the various types of concurrency control protocols, with a focus on two-phase locking. We also discuss timestamp ordering and optimistic concurrency control techniques, as well as multiple-granularity locking. Chapter 21 includes a new presentation of concurrency control methods that are based on the snapshot isolation concept. Finally, Chapter 23 focuses on database recovery protocols, and gives an overview of the concepts and techniques that are used in recovery.

- Part 10 (Chapters 23, 24, and 25) includes the chapter on distributed databases (Chapter 23), plus the two new chapters on NOSQL storage systems for big data (Chapter 24) and big data technologies based on Hadoop and MapReduce (Chapter 25). Chapter 23 introduces distributed database concepts, including availability and scalability, replication and fragmentation of data, maintaining data consistency among replicas, and many other concepts and techniques. In Chapter 24, NOSQL systems are categorized into four general categories with an example system in each category used for our examples, and the data models, operations, as well as the replication/distribution/scalability strategies of each type of NOSQL system are discussed and compared. In Chapter 25, the MapReduce programming model for distributed processing of big data is introduced, and then we have presentations of the Hadoop system and HDFS (Hadoop Distributed File System), as well as the Pig and Hive high-level interfaces, and the YARN architecture.
- Part 11 (Chapters 26 through 29) is entitled Advanced Database Models, Systems, and Applications and includes the following materials: Chapter 26 introduces several advanced data models including active databases/triggers (Section 26.1), temporal databases (Section 26.2), spatial databases (Section 26.3), multimedia databases (Section 26.4), and deductive databases (Section 26.5). Chapter 27 discusses information retrieval (IR) and Web search, and includes topics such as IR and keyword-based search, comparing DB with IR, retrieval models, search evaluation, and ranking algorithms. Chapter 28 is an introduction to data mining including overviews of various data mining methods such as associate rule mining, clustering, classification, and sequential pattern discovery. Chapter 29 is an overview of data warehousing including topics such as data warehousing models and operations, and the process of building a data warehouse.
- Part 12 (Chapter 30) includes one chapter on database security, which includes a discussion of SQL commands for discretionary access control (GRANT, REVOKE), as well as mandatory security levels and models for including mandatory access control in relational databases, and a discussion of threats such as SQL injection attacks, as well as other techniques and methods related to data security and privacy.

Appendix A gives a number of alternative diagrammatic notations for displaying a conceptual ER or EER schema. These may be substituted for the notation we use, if the instructor prefers. Appendix B gives some important physical parameters of disks. Appendix C gives an overview of the QBE graphical query language, and Appendixes D and E (available on the book's Companion Website located at http://www.pearsonhighered.com/elmasri) cover legacy database systems, based on the hierarchical and network database models. They have been used for more than thirty years as a basis for many commercial database applications and transaction-processing systems.

Guidelines for Using This Book

There are many different ways to teach a database course. The chapters in Parts 1 through 7 can be used in an introductory course on database systems in the order that they are given or in the preferred order of individual instructors. Selected chapters and sections may be left out and the instructor can add other chapters from the rest of the book, depending on the emphasis of the course. At the end of the opening section of some of the book's chapters, we list sections that are candidates for being left out whenever a less-detailed discussion of the topic is desired. We suggest covering up to Chapter 15 in an introductory database course and including selected parts of other chapters, depending on the background of the students and the desired coverage. For an emphasis on system implementation techniques, chapters from Parts 7, 8, and 9 should replace some of the earlier chapters.

Chapters 3 and 4, which cover conceptual modeling using the ER and EER models, are important for a good conceptual understanding of databases. However, they may be partially covered, covered later in a course, or even left out if the emphasis is on DBMS implementation. Chapters 16 and 17 on file organizations and indexing may also be covered early, later, or even left out if the emphasis is on database models and languages. For students who have completed a course on file organization, parts of these chapters can be assigned as reading material or some exercises can be assigned as a review for these concepts.

If the emphasis of a course is on database design, then the instructor should cover Chapters 3 and 4 early on, followed by the presentation of relational databases. A total life-cycle database design and implementation project would cover conceptual design (Chapters 3 and 4), relational databases (Chapters 5, 6, and 7), data model mapping (Chapter 9), normalization (Chapter 14), and application programs implementation with SQL (Chapter 10). Chapter 11 also should be covered if the emphasis is on Web database programming and applications. Additional documentation on the specific programming languages and RDBMS used would be required. The book is written so that it is possible to cover topics in various sequences. The following chapter dependency chart shows the major dependencies among chapters. As the diagram illustrates, it is possible to start with several different topics following the first two introductory chapters. Although the chart may seem complex, it is important to note that if the chapters are covered in order, the dependencies are not lost. The chart can be consulted by instructors wishing to use an alternative order of presentation.

For a one-semester course based on this book, selected chapters can be assigned as reading material. The book also can be used for a two-semester course sequence. The first course, *Introduction to Database Design and Database Systems*, at the sophomore, junior, or senior level, can cover most of Chapters 1 through 15. The second course, *Database Models and Implementation Techniques*, at the senior or first-year graduate level, can cover most of Chapters 16 through 30. The two-semester sequence can also be designed in various other ways, depending on the preferences of the instructors.

Supplemental Materials

Support material is available to qualified instructors at Pearson's instructor resource center (http://www.pearsonhighered.com/irc). For access, contact your local Pearson representative.

- PowerPoint lecture notes and figures.
- A solutions manual.

Acknowledgments

It is a great pleasure to acknowledge the assistance and contributions of many individuals to this effort. First, we would like to thank our editor, Matt Goldstein, for his guidance, encouragement, and support. We would like to acknowledge the excellent work of Rose Kernan for production management, Patricia Daly for a thorough copy editing of the book, Martha McMaster for her diligence in proofing the pages, and Scott Disanno, Managing Editor of the production team. We also wish to thank Kelsey Loanes from Pearson for her continued help with the project, and reviewers Michael Doherty, Deborah Dunn, Imad Rahal, Karen Davis, Gilliean Lee, Leo Mark, Monisha Pulimood, Hassan Reza, Susan Vrbsky, Li Da Xu, Weining Zhang and Vincent Oria.

Ramez Elmasri would like to thank Kulsawasd Jitkajornwanich, Vivek Sharma, and Surya Swaminathan for their help with preparing some of the material in Chapter 24. Sham Navathe would like to acknowledge the following individuals who helped in critically reviewing and revising various topics. Dan Forsythe and Satish Damle for discussion of storage systems; Rafi Ahmed for detailed re-organization of the material on query processing and optimization; Harish Butani, Balaji Palanisamy, and Prajakta Kalmegh for their help with the Hadoop and MapReduce technology material; Vic Ghorpadey and Nenad Jukic for revision of the Data Warehousing material; and finally, Frank Rietta for newer techniques in database security, Kunal Malhotra for various discussions, and Saurav Sahay for advances in information retrieval systems.

We would like to repeat our thanks to those who have reviewed and contributed to previous editions of *Fundamentals of Database Systems*.

- First edition. Alan Apt (editor), Don Batory, Scott Downing, Dennis Heimbinger, Julia Hodges, Yannis Ioannidis, Jim Larson, Per-Ake Larson, Dennis McLeod, Rahul Patel, Nicholas Roussopoulos, David Stemple, Michael Stonebraker, Frank Tompa, and Kyu-Young Whang.
- Second edition. Dan Joraanstad (editor), Rafi Ahmed, Antonio Albano, David Beech, Jose Blakeley, Panos Chrysanthis, Suzanne Dietrich, Vic Ghorpadey, Goetz Graefe, Eric Hanson, Junguk L. Kim, Roger King, Vram Kouramajian, Vijay Kumar, John Lowther, Sanjay Manchanda, Toshimi Minoura, Inderpal Mumick, Ed Omiecinski, Girish Pathak, Raghu Ramakrishnan, Ed Robertson, Eugene Sheng, David Stotts, Marianne Winslett, and Stan Zdonick.
- Third edition. Maite Suarez-Rivas and Katherine Harutunian (editors); Suzanne Dietrich, Ed Omiecinski, Rafi Ahmed, Francois Bancilhon, Jose Blakeley, Rick Cattell, Ann Chervenak, David W. Embley, Henry A. Etlinger, Leonidas Fegaras, Dan Forsyth, Farshad Fotouhi, Michael Franklin, Sreejith Gopinath, Goetz Craefe, Richard Hull, Sushil Jajodia, Ramesh K. Karne, Harish Kotbagi, Vijay Kumar, Tarcisio Lima, Ramon A. Mata-Toledo, Jack McCaw, Dennis McLeod, Rokia Missaoui, Magdi Morsi, M. Narayanaswamy, Carlos Ordonez, Joan Peckham, Betty Salzberg, Ming-Chien Shan, Junping Sun, Rajshekhar Sunderraman, Aravindan Veerasamy, and Emilia E. Villareal.
- Fourth edition. Maite Suarez-Rivas, Katherine Harutunian, Daniel Rausch, and Juliet Silveri (editors); Phil Bernhard, Zhengxin Chen, Jan Chomicki, Hakan Ferhatosmanoglu, Len Fisk, William Hankley, Ali R. Hurson, Vijay Kumar, Peretz Shoval, Jason T. L. Wang (reviewers); Ed Omiecinski (who contributed to Chapter 27). Contributors from the University of Texas at

Arlington are Jack Fu, Hyoil Han, Babak Hojabri, Charley Li, Ande Swathi, and Steven Wu; Contributors from Georgia Tech are Weimin Feng, Dan Forsythe, Angshuman Guin, Abrar Ul-Haque, Bin Liu, Ying Liu, Wanxia Xie, and Waigen Yee.

- Fifth edition. Matt Goldstein and Katherine Harutunian (editors); Michelle Brown, Gillian Hall, Patty Mahtani, Maite Suarez-Rivas, Bethany Tidd, and Joyce Cosentino Wells (from Addison-Wesley); Hani Abu-Salem, Jamal R. Alsabbagh, Ramzi Bualuan, Soon Chung, Sumali Conlon, Hasan Davulcu, James Geller, Le Gruenwald, Latifur Khan, Herman Lam, Byung S. Lee, Donald Sanderson, Jamil Saquer, Costas Tsatsoulis, and Jack C. Wileden (reviewers); Raj Sunderraman (who contributed the laboratory projects); Salman Azar (who contributed some new exercises); Gaurav Bhatia, Fariborz Farahmand, Ying Liu, Ed Omiecinski, Nalini Polavarapu, Liora Sahar, Saurav Sahay, and Wanxia Xie (from Georgia Tech).
- Sixth edition. Matt Goldstein (editor); Gillian Hall (production management); Rebecca Greenberg (copy editing); Jeff Holcomb, Marilyn Lloyd, Margaret Waples, and Chelsea Bell (from Pearson); Rafi Ahmed, Venu Dasigi, Neha Deodhar, Fariborz Farahmand, Hariprasad Kumar, Leo Mark, Ed Omiecinski, Balaji Palanisamy, Nalini Polavarapu, Parimala R. Pranesh, Bharath Rengarajan, Liora Sahar, Saurav Sahay, Narsi Srinivasan, and Wanxia Xie.

Last, but not least, we gratefully acknowledge the support, encouragement, and patience of our families.

R. *E*.

S.B.N.

This page intentionally left blank

Contents

Preface vii About the Authors xxx

Introduction to Databases

chapter **1** Databases and Database Users 3

- 1.1 Introduction 4
- 1.2 An Example 6
- 1.3 Characteristics of the Database Approach 10
- 1.4 Actors on the Scene 15
- 1.5 Workers behind the Scene 17
- 1.6 Advantages of Using the DBMS Approach 17
- 1.7 A Brief History of Database Applications 23
- 1.8 When Not to Use a DBMS 27
- 1.9 Summary 27

Review Questions 28

Exercises 28

Selected Bibliography 29

chapter 2 Database System Concepts and Architecture 31

- 2.1 Data Models, Schemas, and Instances 32
- 2.2 Three-Schema Architecture and Data Independence 36
- 2.3 Database Languages and Interfaces 38
- 2.4 The Database System Environment 42
- 2.5 Centralized and Client/Server Architectures for DBMSs 46
- 2.6 Classification of Database Management Systems 51

2.7 Summary 54

Review Questions 55

Exercises 55

part 2

Conceptual Data Modeling and Database Design

chapter **3** Data Modeling Using the Entity-Relationship (ER) Model 59

- 3.1 Using High-Level Conceptual Data Models for Database Design 60
- 3.2 A Sample Database Application 62
- 3.3 Entity Types, Entity Sets, Attributes, and Keys 63
- 3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints 72
- 3.5 Weak Entity Types 79
- 3.6 Refining the ER Design for the COMPANY Database 80
- 3.7 ER Diagrams, Naming Conventions, and Design Issues 81
- 3.8 Example of Other Notation: UML Class Diagrams 85
- 3.9 Relationship Types of Degree Higher than Two 88
- 3.10 Another Example: A UNIVERSITY Database 92
- 3.11 Summary 94

Review Questions 96

Exercises 96

Laboratory Exercises 103

Selected Bibliography 104

chapter **4** The Enhanced Entity-Relationship (EER) Model 107

- 4.1 Subclasses, Superclasses, and Inheritance 108
- 4.2 Specialization and Generalization 110
- 4.3 Constraints and Characteristics of Specialization and Generalization Hierarchies 113
- 4.4 Modeling of UNION Types Using Categories 120
- 4.5 A Sample UNIVERSITY EER Schema, Design Choices, and Formal Definitions 122
- 4.6 Example of Other Notation: Representing Specialization and Generalization in UML Class Diagrams 127
- 4.7 Data Abstraction, Knowledge Representation, and Ontology Concepts 128
- 4.8 Summary 135

Review Questions 135

Exercises 136

Laboratory Exercises 143

■ part 3

The Relational Data Model and SQL

chapter **5** The Relational Data Model and Relational **Database Constraints** 149

- 5.1 Relational Model Concepts 150
- 5.2 Relational Model Constraints and Relational Database Schemas 157
- 5.3 Update Operations, Transactions, and Dealing with Constraint Violations 165 5.4 Summary 169

Review Questions 170 Exercises 170 Selected Bibliography 175

chapter **6** Basic SQL 177

6.1 SQL Data Definition and Data Types 179 6.2 Specifying Constraints in SQL 184 6.3 Basic Retrieval Queries in SQL 187 6.4 INSERT, DELETE, and UPDATE Statements in SQL 198 6.5 Additional Features of SQL 201 6.6 Summary 202 **Review Questions** 203 Exercises 203 Selected Bibliography 205

chapter **7** More SQL: Complex Queries, Triggers, Views, and Schema Modification 207

7.1 More Complex SQL Retrieval Queries 207

7.2 Specifying Constraints as Assertions and Actions as Triggers 225

- 7.3 Views (Virtual Tables) in SQL 228
- 7.4 Schema Change Statements in SQL 232
- 234 7.5 Summary

Review Questions 236

Exercises 236

Selected Bibliography 238

chapter **8** The Relational Algebra and Relational Calculus 239

- 8.1 Unary Relational Operations: SELECT and PROJECT 241
- 8.2 Relational Algebra Operations from Set Theory 246

251 8.3 Binary Relational Operations: JOIN and DIVISION 8.4 Additional Relational Operations 259 8.5 Examples of Queries in Relational Algebra 265 8.6 The Tuple Relational Calculus 268 8.7 The Domain Relational Calculus 277 8.8 Summary 279 **Review Questions** 280 Exercises 281 286 Laboratory Exercises Selected Bibliography 288

chapter **9** Relational Database Design by ER- and EER-to-Relational Mapping 289

9.1 Relational Database Design Using ER-to-Relational Mapping 290

9.2 Mapping EER Model Constructs to Relations 298

9.3 Summary 303

Review Questions 303 Exercises 303

Laboratory Exercises 305 Selected Bibliography 306

■ part **4**

Database Programming Techniques

chapter **10** Introduction to SQL Programming Techniques 309

- 10.1 Overview of Database Programming Techniques and Issues 310
- 10.2 Embedded SQL, Dynamic SQL, and SQLJ 314
- 10.3 Database Programming with Function Calls and Class Libraries: SQL/CLI and JDBC 326
- 10.4 Database Stored Procedures and SQL/PSM 335
- 10.5 Comparing the Three Approaches 338

10.6 Summary 339

Review Questions 340

Exercises 340

Selected Bibliography 341

chapter **1** Web Database Programming Using PHP 343

11.1 A Simple PHP Example 344

11.2 Overview of Basic Features of PHP 346

11.3 Overview of PHP Database Programming 353 11.4 Brief Overview of Java Technologies for Database Web Programming 358 11.5 Summary 358 **Review Questions** 359 Exercises 359 Selected Bibliography 359

∎ part 5

Object, Object-Relational, and XML: Concepts, Models, Languages, and Standards

chapter **12** Object and Object-Relational Databases 363

- 12.1 Overview of Object Database Concepts 365
- 12.2 Object Database Extensions to SQL 379
- 12.3 The ODMG Object Model and the Object Definition Language ODL 386
- 12.4 Object Database Conceptual Design 405
- 12.5 The Object Query Language OQL 408
- 12.6 Overview of the C++ Language Binding in the ODMG Standard 417

12.7 Summary 418 420

Review Questions

Exercises 421 Selected Bibliography

chapter **13** XML: Extensible Markup Language 425

- 13.1 Structured, Semistructured, and Unstructured Data 426
- 13.2 XML Hierarchical (Tree) Data Model 430
- 13.3 XML Documents, DTD, and XML Schema 433

422

- 13.4 Storing and Extracting XML Documents from Databases 442
- 13.5 XML Languages 443
- 13.6 Extracting XML Documents from Relational Databases 447
- 13.7 XML/SQL: SQL Functions for Creating XML Data 453
- 13.8 Summary 455
- **Review Questions** 456
- Exercises 456
- Selected Bibliography 456

∎ part 6

Database Design Theory and Normalization

chapter **14** Basics of Functional Dependencies and Normalization for Relational Databases 459

- 14.1 Informal Design Guidelines for Relation Schemas 461
- 14.2 Functional Dependencies 471
- 14.3 Normal Forms Based on Primary Keys 474
- 14.4 General Definitions of Second and Third Normal Forms 483
- 14.5 Boyce-Codd Normal Form 487
- 14.6 Multivalued Dependency and Fourth Normal Form 491
- 14.7 Join Dependencies and Fifth Normal Form 494
- 14.8 Summary 495

Review Questions 496

Exercises 497

Laboratory Exercises 501

Selected Bibliography 502

chapter **15** Relational Database Design Algorithms and Further Dependencies 503

- 15.1 Further Topics in Functional Dependencies: Inference Rules, Equivalence, and Minimal Cover 505
- 15.2 Properties of Relational Decompositions 513
- 15.3 Algorithms for Relational Database Schema Design 519
- 15.4 About Nulls, Dangling Tuples, and Alternative Relational Designs 523
- 15.5 Further Discussion of Multivalued Dependencies and 4NF 527
- 15.6 Other Dependencies and Normal Forms 530
- 15.7 Summary 533

Review Questions 534

Exercises 535

Laboratory Exercises 536

■ part 7

File Structures, Hashing, Indexing, and Physical Database Design

chapter **16** Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures 541

16.1 Introduction 542 16.2 Secondary Storage Devices 547 16.3 Buffering of Blocks 556 16.4 Placing File Records on Disk 560 16.5 Operations on Files 564 16.6 Files of Unordered Records (Heap Files) 567 16.7 Files of Ordered Records (Sorted Files) 568 16.8 Hashing Techniques 572 16.9 Other Primary File Organizations 582 16.10 Parallelizing Disk Access Using RAID Technology 584 16.11 Modern Storage Architectures 588 16.12 Summary 592 **Review Questions** 593 Exercises 595 Selected Bibliography 598

chapter **17** Indexing Structures for Files and Physical Database Design 601

- 17.1 Types of Single-Level Ordered Indexes 602
- 17.2 Multilevel Indexes 613
- 17.3 Dynamic Multilevel Indexes Using B-Trees and B⁺-Trees 617
- 17.4 Indexes on Multiple Keys 631
- 17.5 Other Types of Indexes 633
- 17.6 Some General Issues Concerning Indexing 638
- 17.7 Physical Database Design in Relational

Databases 643

17.8 Summary 646

Review Questions 647

Exercises 648

part 8

Query Processing and Optimization

chapter 18 Strategies for Query Processing 655

- 18.1 Translating SQL Queries into Relational Algebra and Other Operators 657
- 18.2 Algorithms for External Sorting 660
- 18.3 Algorithms for SELECT Operation 663
- 18.4 Implementing the JOIN Operation 668
- 18.5 Algorithms for PROJECT and Set Operations 676
- 18.6 Implementing Aggregate Operations and Different Types of JOINs 678
- 18.7 Combining Operations Using Pipelining 681
- 18.8 Parallel Algorithms for Query Processing68318.9 Summary688Review Questions688Exercises689

Selected Bibliography 689

chapter **19** Query Optimization 691

- 19.1 Query Trees and Heuristics for Query Optimization 692
- 19.2 Choice of Query Execution Plans 701
- 19.3 Use of Selectivities in Cost-Based Optimization 710
- 19.4 Cost Functions for SELECT Operation 714
- 19.5 Cost Functions for the JOIN Operation 717
- 19.6 Example to Illustrate Cost-Based Query Optimization 726
- 19.7 Additional Issues Related to Query Optimization 728
- 19.8 An Example of Query Optimization in Data Warehouses 731
- 19.9 Overview of Query Optimization in Oracle 733
- 19.10 Semantic Query Optimization 737
- 19.11 Summary 738

Review Questions 739

Exercises 740

∎ part 9

Transaction Processing, Concurrency Control, and Recovery

chapter **20** Introduction to Transaction Processing Concepts and Theory 745

- 20.1 Introduction to Transaction Processing 746
- 20.2 Transaction and System Concepts 753
- 20.3 Desirable Properties of Transactions 757

20.4 Characterizing Schedules Based on Recoverability 759

- 20.5 Characterizing Schedules Based on Serializability 763
- 20.6 Transaction Support in SQL 773

20.7 Summary 776 Review Questions 777

Exercises 777

Selected Bibliography 779

chapter **21** Concurrency Control Techniques 781

- 21.1 Two-Phase Locking Techniques for Concurrency Control 782
- 21.2 Concurrency Control Based on Timestamp Ordering 792
- 21.3 Multiversion Concurrency Control Techniques 795
- 21.4 Validation (Optimistic) Techniques and Snapshot Isolation Concurrency Control 798
- 21.5 Granularity of Data Items and Multiple Granularity Locking 800
- 21.6 Using Locks for Concurrency Control in Indexes 805
- 21.7 Other Concurrency Control Issues 806
- 21.8 Summary807Review Questions808Exercises809

Selected Bibliography 810

chapter **22** Database Recovery Techniques 813

- 22.1 Recovery Concepts 814
- 22.2 NO-UNDO/REDO Recovery Based on Deferred Update 821
- 22.3 Recovery Techniques Based on Immediate Update 823

22.4 Shadow Paging 826 22.5 The ARIES Recovery Algorithm 827 22.6 Recovery in Multidatabase Systems 831 22.7 Database Backup and Recovery from Catastrophic Failures 832 22.8 Summary 833 **Review Questions** 834 Exercises 835 Selected Bibliography 838

■ part 10

Distributed Databases, NOSQL Systems, and Big Data

chapter 23 Distributed Database Concepts 841

- 23.1 Distributed Database Concepts 842
- 23.2 Data Fragmentation, Replication, and Allocation Techniques for Distributed Database Design 847
- 23.3 Overview of Concurrency Control and Recovery in Distributed Databases 854
- 23.4 Overview of Transaction Management in Distributed Databases 857
- 23.5 Query Processing and Optimization in Distributed Databases 859
- 23.6 Types of Distributed Database Systems 865
- 23.7 Distributed Database Architectures 868
- 23.8 Distributed Catalog Management 875

23.9 Summary 876

Review Questions 877

Exercises 878

Selected Bibliography 880

chapter 24 NOSQL Databases and Big Data Storage Systems 883

- 24.1 Introduction to NOSQL Systems 884
- 24.2 The CAP Theorem 888
- 24.3 Document-Based NOSQL Systems and MongoDB 890
- 24.4 NOSQL Key-Value Stores 895
- 24.5 Column-Based or Wide Column NOSQL Systems 900
- 24.6 NOSQL Graph Databases and Neo4j 903
- 24.7 Summary 909

Review Questions 909

chapter **25** Big Data Technologies Based on MapReduce and Hadoop 911

25.1 What Is Big Data? 914 25.2 Introduction to MapReduce and Hadoop 916 25.3 Hadoop Distributed File System (HDFS) 921 25.4 MapReduce: Additional Details 926 25.5 Hadoop v2 alias YARN 936 25.6 General Discussion 944 25.7 Summary 953 **Review Questions** 954 Selected Bibliography 956

part 11

Advanced Database Models, Systems, and Applications

chapter **26** Enhanced Data Models: Introduction to Active, Temporal, Spatial, Multimedia, and Deductive Databases 961

26.1 Active Database Concepts and Triggers 963

26.2 Temporal Database Concepts 974

26.3 Spatial Database Concepts 987

26.4 Multimedia Database Concepts 994

26.5 Introduction to Deductive Databases 999

26.6 Summary 1012

Review Questions 1014

Exercises 1015

Selected Bibliography 1018

chapter 27 Introduction to Information Retrieval and Web Search 1021

- 27.1 Information Retrieval (IR) Concepts 1022
- 27.2 Retrieval Models 1029
- 27.3 Types of Queries in IR Systems 1035
- 27.4 Text Preprocessing 1037
- 27.5 Inverted Indexing 1040
- 27.6 Evaluation Measures of Search Relevance 1044
- 27.7 Web Search and Analysis 1047

27.8 Trends in Information Retrieval 1057
27.9 Summary 1063
Review Questions 1064
Selected Bibliography 1066

chapter 28 Data Mining Concepts 1069

28.1 Overview of Data Mining Technology 1070 28.2 Association Rules 1073 28.3 Classification 1085 28.4 Clustering 1088 28.5 Approaches to Other Data Mining Problems 1091 28.6 Applications of Data Mining 1094 28.7 Commercial Data Mining Tools 1094 28.8 Summary 1097 **Review Questions** 1097 Exercises 1098 Selected Bibliography 1099

chapter **29** Overview of Data Warehousing and OLAP 1101

- 29.1 Introduction, Definitions, and Terminology 1102
- 29.2 Characteristics of Data Warehouses 1103
- 29.3 Data Modeling for Data Warehouses 1105
- 29.4 Building a Data Warehouse 1111
- 29.5 Typical Functionality of a Data Warehouse 1114
- 29.6 Data Warehouse versus Views 1115
- 29.7 Difficulties of Implementing Data Warehouses 1116
- 29.8 Summary 1117

Review Questions 1117

Selected Bibliography 1118

■ part **12**

Additional Database Topics: Security

chapter **30** Database Security 1121

- 30.1 Introduction to Database Security Issues 1122
- 30.2 Discretionary Access Control Based on Granting and Revoking Privileges 1129
- 30.3 Mandatory Access Control and Role-Based Access Control for Multilevel Security 1134

30.4 SQL Injection 1143 30.5 Introduction to Statistical Database Security 1146 30.6 Introduction to Flow Control 1147 30.7 Encryption and Public Key Infrastructures 1149 30.8 Privacy Issues and Preservation 1153 30.9 Challenges to Maintaining Database Security 1154 30.10 Oracle Label-Based Security 1155 30.11 Summary 1158 **Review Questions** 1159 Exercises 1160 Selected Bibliography 1161

appendix A Alternative Diagrammatic Notations for ER Models 1163

appendix **B** Parameters of Disks 1167

appendix **C** Overview of the QBE Language 1171

C.1 Basic Retrievals in QBE 1171

C.2 Grouping, Aggregation, and Database Modification in QBE 1175

appendix **D** Overview of the Hierarchical Data Model

(located on the Companion Website at http://www.pearsonhighered.com/elmasri)

appendix E Overview of the Network Data Model (located on the Companion Website at

http://www.pearsonhighered.com/elmasri)

Selected Bibliography 1179

Index 1215